Ответы на вопросы по дисциплине КСЕ

Тип:
Добавлен:

1. ПРЕДМЕТ, СУЩНОСТЬ И ЦЕЛИ «КСЕ»

Концепции (смысл, определение): - определенный способ понимания - основная точка зрения - ведущий замысел. Современное естествознание - совокупность наук о природе.

КСЕ – дисциплина, включающая в себя совокупность господствующих точек зрения на основные вопросы естествознания, на его методологию и логику развития.

Основные проблемы КСЕ: -методология естественнонаучного познания; -логика развития естествознания; -современная естественнонаучная картина мира; -структурные уровни организации материи (микро-, макро-, мегамиры); - особенности биологического уровня организации материи; -естественнонаучные проблемы человека.

Цель и задачи: - показать панораму современного естествознания; - выработать свой взгляд на мир; -противостоять влиянию анти-, лженауки.

Целью дисциплины «КСЕ» является помощь в овладении современной естественно-научной картиной мира, формировании подлинно научного мировоззрения и осознании принципов и закономерной развития природы – от микромира до Вселенной и Человека.

2. ЕСТЕСТВЕННОНАУЧНАЯ И ГУМАНИТАРНАЯ КУЛЬТУРЫ:

ИХ СПЕЦИФИКА И ВЗАИМОСВЯЗЬ

Неразрывное единство гуманитарной и естественно-научной культур может быть оправдано несколькими соображениями.

А. Оба типа культур – суть творения разума и рук человеческих;

Б. Описываемые типы культур и составляющие их сердцевину науки активно формируют мировоззрение людей (каждый – свою часть). Мировоззрение человека не может быть половинчатым. Поэтому гуманитарные и естественно-научные знания вынуждены координироваться, взаимосогласовываться.

В. Естественно-научный и гуманитарный типы культур и наук имеют массу «пограничных» проблем. Решение таких проблем заставляет их идти на сотрудничество друг с другом.

Г. Общественное разделение труда повышает его эффективность и порождает взаимозависимость людей. Подобно этому разделение «труда» гуманитарной и естественно-научной культур порождает необходимость «обмена продуктами и услугами», работает в целом на единство.

Естествознание нуждается в «гуманитарной помощи» по некоторым проблемам, гуманитарное знание, со своей стороны, по мере возможности пользуется достижениями естественно-научной культуры.

Д. Единство обоих рассматриваемых типов культур и наук проявляется не только в стремлении к истине, но и в схожести заблуждений.

Е. Не менее очевидна и корреляция (взаимная связь) между радикальными поворотами в судьбах естественно-научной и гуманитарной культур.

Ж. Неклассический тип развития естественных и гуманитарных наук выявил и относительность критериев их разграничения.

Перечисленные аргументы подтверждают единство естественно-научной и гуманитарной культур.

Единство и взаимосвязь естественно-научной и гуманитарной культур реально проявляется в последней четверти ХХ века в следующем:

- в изучении сложных социоприродных комплексов, включающих в качестве компонентов человека и общество, и формирование для этой цели «симбиотических» видов наук: экологии, социобиологии, биоэтики и др.

- в осознании необходимости и реальной организации «гуманитарных экспертиз» естественно-научных программ;

- в формировании общей для гуманитарных и естественно-научных наук методологии познания;

- в гуманитаризации естественно-научного и технического образования;

- в создании дифференцированной, но единой системы ценностей, которая позволила бы человечеству четче определить перспективы своего развития в 21 веке.

3. ОСОБЕННОСТИ ПОЗНАНИЯ В «НАУКАХ О ПРИРОДЕ»

И В «НАУКАХ О ДУХЕ»

Природа для нас есть нечто внешнее, материальное, чуждое. Её явления безгласны, немы и холодно равнодушны по отношению к нам. Их исследования сводится к столь же бесстрастному расчленению на причины и следствия, общее и особенное, необходимое и случайное и пр. Главная и определяющая познавательная процедура в науках о природе – есть объяснение, сведение явлений природы к их причинам и законам существования. Науки о духе, напротив, имеют дело с предметом не внешним, а внутренним для нас. Поэтому дела человеческие подлежат не столько объяснению, сколько пониманию. Именно поэтому истины в науках о природе доказываются. Истины же в науках о духе лишь истолковываются, интерпретируются.

Для наук о природе характерен «генерализирующий» (выделяющий общее в вещах) метод исследования, для наук о духе – «индивидуализирующий» (подчеркивающий неповторимость, уникальность явления).

Цель наук о природе – отыскать общее в разнообразных явлениях, подвести их под единое правило. Гуманитарная наука также обязана искать общее в объектах своего исследования и устанавливать общие правила, законы. Но так как сферой ее компетентности является человек, нельзя пренебрегать его индивидуальностью, отличиями от других людей даже при установлении общего правила или закона.

«Индивидуализирующий» метод наук гуманитарных противопоставляется «генерализирующему» методу наук естественных.

Следующим параметром, разводящим гуманитарные и естественные науки по разные стороны баррикад, является их отношение к ценностям. Ценностная составляющая знания оказывается существенной в основном для гуманитаристики. Из естествознания ценности упорно изгонялись, хотя естественные науки не вправе считать себя полностью свободными от ценностей.

Естествознание потратило немало усилий, чтобы избавиться от присущего ему на первых порах антропоцентризма – т.е. представления о центральном месте человека в мироздании в целом. В гуманитарных науках же человек по-прежнему находится в центре внимания, представляет собой главную ценность и важнейший объект интереса. Гуманитарное знание антропоцентрично по определению.

Гуманитарные науки являются идеологически нагруженными. Естественные же науки идеологически нейтральны.

Взаимоотношения субъекта и объекта познания в естественных науках строго разделены, а в гуманитарных – частично совпадают.

Упор на строго объективную количественную оценку изучаемых объектов принес естествознанию славу «точных наук», основу их методологии составляет применение экспериментальных методов; в гуманитарных науках заметно преобладание качественных оценок, так как изучаемые ими явления плохо поддаются математической (количественной) обработке и экспериментальные исследования весьма затруднены из-за моральных запретов.

Характер объекта исследования в естественных науках – материальный, относительно устойчивый, а в гуманитарных – больше идеальный, чем материальный, относительно изменчивый.

4. РОЛЬ НАУКИ В ДУХОВНОЙ КУЛЬТУРЕ ОБЩЕСТВА

Определение места и специфики науки в системе культуры человечества стало предметом многих исследований философов и ученых прошлых веков и нынешнего времени. Исходное общее определение науки выделяет ее самые необходимые признаки: Наука – это специализированная система идеальной, знаково-смысловой и вещественно-предметной деятельности людей, направленная на достижение максимально достоверного истинного знания о действительности.

Наука составляет существенную часть человеческого способа освоения действительности.

Наука в общем понимании – это система сознания и деятельности людей, направленная на достижение объективно-истинных знаний и систематизацию доступной человеку и обществу информации.

Функционирование науки раскрывает её уникальность и высокую общественно-человеческую значимость. В составе культуры общества наука включена в систему духовной культуры человечества.

5. СУЩНОСТЬ И ОСНОВНЫЕ ПРИНЦИПЫ ЭТИКИ НАУКИ

Этика науки занимается изучением специфики моральной регуляции в научной сфере. Предмет ее забот – отыскание и обоснование ценностей, норм и правил, которые бы способствовали, во-первых, большей эффективности научного труда, а во-вторых, его безупречности с позиций общественного блага. Система подобных ценностей называется этосом науки.

«Внутренний» этой науки включены следующие принципы:

а) самоценность истины (высшей ценностью деятельности в сфере науки является истина. Какой бы «печальной» или «низкой» не оказалась обнаруженная истина, она должна восторжествовать).

б) новизну научного знания как цель и решающее условие успеха ученого (наука жива только непрерывным приращением, обновлением знания, по-настоящему интересно лишь то, что ново).

В) полную свободу научного творчества (действия на основе свободного выбора всегда бывают намного успешнее, при этом для науки не существует запретных тем).

Г) абсолютное равенство всех исследователей «перед лицом истины» ( невзирая ни на какие титулы, авторитеты и пр.)

Д) научные истины – всеобщее достояние (на научные открытия не существует права собственности, они являются достоянием всего человечества).

Е) исходный критицизм и др. (всякая новая теория поневоле отрицает, преподносит в критическом свете уже существующую, но с другой стороны – сама попадает под огонь критики. Критичность в науке – это норма) .

Назначение всех этих принципов и норм – самосохранение науки и её возможностей в поисках истины.

6. СУЩНОСТЬ И ОСОБЕННОСТИ НАУЧНОГО ПОЗНАНИЯ

И ЕГО СТРУКТУРА

Основными элементами научного познания являются:

· Твердо установленные факты;

· Закономерности, обобщающие группы фактов;

· Теории, представляющие собой системы закономерностей, в совокупности описывающих некий фрагмент реальности;

· Научные картины мира, рисующие обобщенные образы всей реальности, в которых сведены в некое системное единство все теории, допускающие взаимное согласование.

Главной опорой, фундаментом науки являются установленные факты. Если они установлены правильно (подтверждены многочисленными свидетельствами наблюдений, экспериментов, проверок и т.д.), то считаются бесспорными и обязательными. Это эмпирический, т.е. опытный базис науки.

Проблема различения двух уровней научного познания – теоретического и эмпирического (опытного) – вытекает из одной специфической особенности его организации. Суть этой особенности заключается в существовании различных типов обобщения доступного изучению материала. Общее же в вещах устанавливается путем абстрагирования, отвлечения от них тех свойств, признаков, характеристик, которые повторяются, являются сходными, одинаковыми во множестве вещей одного класса.

Именно эта разница в способах отыскания общего в вещах, т.е. установления закономерностей, и разводит эмпирический и теоретический уровни познания. На уровне чувственно-практического опыта (эмпирическом) возможно фиксирование только внешних общих признаков вещей и явлений. Существенные же внутренние их признаки здесь можно только угадать, схватить случайно. Объяснить же их и обосновать позволяет лишь теоретический уровень познания.

Наука потому и считается делом сложным и творческим, что от эмпирии к теории нет прямого перехода. Теория не строится путем непосредственного индуктивного обобщения опыта. Это, конечно, не означает, что теория вообще не связана с опытом. Изначальный толчок к созданию любой теоретической конструкции дает как раз практический опыт.

Различаются рассматриваемые уровни познания и по объектам исследования. Проводя исследование на эмпирическом уровне, ученый имеет дело непосредственно с природными и социальными объектами. Теория же оперирует исключительно с идеализированными объектами.

Существуют и методы, применяемые на всех уровнях научного познания: абстрагирование, обобщение, аналогия, анализ и синтез и др.

Такой способ рассуждения, при котором общий вывод делается на основе обобщения частных посылок, принято называть индукцией. Это движение познания от частного к общему. Движение в противоположном направлении, от общего к частному, получило название дедукции.

Структура научного познания, как бы двухэтажна («верхний этаж» - теория вроде бы надстроенная над «нижним» (эмпирией) и без последнего должна рассыпаться, но между ними почему-то нет прямой и удобной лестницы. Из нижнего этажа на верхний можно попасть только «скачком» в прямом и переносном смысле.

В наше время стандартная модель строения научного знания выглядит примерно так. Познание начинается с установления путем наблюдения ли экспериментов различных фактов. Если среди этих фактов обнаруживается некая регулярность, повторяемость, то в принципе можно утверждать, что найден эмпирический закон, первое эмпирическое обобщение. Но рано или поздно отыскиваются такие факты, которые никак не встраиваются в обнаруженную регулярность. Тут на помощь призывается творческий интеллект ученого, его умение мысленно перестроить известную реальность так, чтобы выпадающие из общего ряда факты вписались, наконец, в некую единую схему и перестали противоречить эмпирической закономерности.

7. КРИТЕРИИ И НОРМЫ НАУЧНОСТИ.

ОСНОВНЫЕ МЕТОДЫ НАУЧНОГО ПОЗНАНИЯ

Для того, чтобы четко отграничить псевдонаучные идеи от идей собственно науки разными направлениями методологии науки сформулировано несколько принципов. Один из них получил название принципа верификации: какое-либо понятие или суждение имеет значение, если оно сводимо к непосредственному опыту или высказываниям о нем, т.е. эмпирически проверяемо. Если же найти нечто эмпирически фиксируемое для такого суждения не удается, то оно либо представляет собой тавтологию, либо лишено смысла. Принцип верификации позволяет в первом приближении отграничить научное знание от явно не научного. Однако он не можем помочь там, где система идей скроена так, что решительно все возможные эмпирические факты в состоянии истолковать в свою пользу – идеология, религия, астрология и т.п. В таких случаях полезно прибегнуть еще к одному принципу разграничения науки и не науки, предложенному крупнейшим философом ХХ в.К.Поппером, - принципу фальсификации. Только те знания могут претендовать на звание «научного», которое в принципе опровержимо. Теория, неопровержимая в принципе, не может быть научной. Идея божественного творения мира в принципе неопровержима. Ибо любую попытку ее опровержения можно представить как результат действия все того же божественного замысла, вся сложность и непредсказуемость которого нам просто не по зубам. Но раз эта идея неопровержима, значит, она вне науки.

Сами работающие в науке ученые считают вопрос о разграничении науки и не науки не слишком сложным, так как они интуитивно чувствуют подлинно и псевдонаучный характер знания, ориентируясь на определенные нормы и идеалы научности, некие эталоны исследовательской работы. Некий инвариант таких норм, обусловленный единством стиля мышления, принято называть рациональным.

В рамках рационального стиля мышления научно знание характеризует следующие методологические критерии:

- универсальность, т.е. исключение любой конкретики – места, времени, субъекта и т.п.;

- согласованность или непротиворечивость, обеспечиваемая дедуктивным способом развертывания системы знания;

- простота; хорошей считается та теория, которая объясняет максимально широкий круг явлений, опираясь на минимальное количество научных принципов;

- объяснительный потенциал;

- наличие предсказательной силы.

Эти общие критерии, или нормы научности, входят в эталон научного знания постоянно.

Как ни критикуй эмпиризм за неполноту или односторонность, исходная его посылка все-таки верна: конечным источником любого человеческого знания является опыт (во всех возможных формах). С противником эмпиризма – рационализмом, отстаивающим дедуктивную модель развертывания знания, положение не лучше. В этом случае все частные утверждения и законы теории выводятся из общих первичных допущений, постулатов, аксиом и пр.

8. ЛОГИКА, ЗАКОНОМЕРНОСТИ И

ОБЩИЕ МОДЕЛИ РАЗВИТИЯ НАУКИ

Две с половиной тысячи лет истории науки не составляют сомнения в том, что она развивается, т.е. необратимо качественно изменяется со временем. Наука постоянно наращивает свой объем, непрерывно разветвляется, усложняется и т.п.

Выявление логики развития науки означает уяснение закономерностей научного прогресса, его движущих сил, причин и исторической обусловленности. Прежде полагали, что в науке идет непрерывное приращение научного знания, постоянное накопление новых научных открытий и все более точных теорий. Ныне логика развития науки представляется иной: последняя развивается непрерывным накоплением новых фактов и идей, не шаг за шагом, а через фундаментальные теоретические сдвиги, в один прекрасный момент перекраивающие дотоле привычную общую картину мира и заставляющие ученых перестраивать свою деятельность на базе принципиально иных мировоззренческих установок. Пошаговую логику неспешной эволюции науки сменила логика научных революций и катастроф. Ввиду новизны и сложности проблемы в методологии науки еще не сложилось общепризнанного подхода или модели логики развития научного знания. Таких моделей множество.

Наибольшее число сторонников, начиная с 60-х гг. нынешнего века, собрала концепция развития науки, предложенная американским историком и философом науки Томасом Куном. Он ввел в методологию науки принципиально новое понятие – «парадигма» (образец). В нем фиксируется существование особого способа организации знания, подразумевающего определенный набор предписаний, задающий характер видения мира. В парадигме также содержаться образцы решения конкретных проблем. Решающая новизна концепции Т.Куна заключалась в мысли о том, что смена парадигм в развитии науки не носит линейного характера. Т.е. развитие науки, рост научного знания нельзя представлять строго тянущегося вверх, скорее он похож на развитие кактуса.

Альтернативную модель развития науки, также ставшую популярной, предложил И.Лакатос. Его концепция, названная методологией научно-исследовательских программ, по своим общим контурам довольна близка к куновской, однако расходится с ней в принципиальном пункте. Лакатос считает, что выбор научным сообществом одной из многих конкурирующих исследовательских программ может и должен осуществляться рационально, на основе четких, рациональных критериев. Он считал, что исторически непрерывное развитие науки представляет собой конкуренцию научно-исследовательских программ. Концепции Куна и Лакатоса оказались самыми влиятельными реконструкциями логики развития науки во второй половине 20в.

9. ПОНЯТИЕ О СУЩНОСТИ И ЗАКОНОМЕРНОСТЯХ

НАУЧНОЙ РЕВОЛЮЦИИ. НАУЧНАЯ КАРТИНА МИРА

Термин «научная революция» может иметь разное содержание. Самая радикальная его интерпретация заключается в признании одной-единственной революции, которая состоит в победе над невежеством, суевериями и предрассудками. Множество теорий, в совокупности описывающих известный человеку природный мир, синтезируется в единую научную картину мира. Это целостная система представлений об общих принципах и законах устройства мироздания. Поскольку научная картина мира представляет собой обобщенное, системное образование, ее радикальное изменение нельзя свети к отдельному, пусть даже и к крупнейшему научному открытию. Таких четко и однозначно фиксируемых радикальных смен научных картин мира, т.е. научных революций, в истории развития науки вообще и естествознания в частности можно выделить 3: аристотелевская, ньютоновская и эйнштейновская.

Первая революция в познании мира была осуществлена в 6-4 в. До н.э., в результате которой и появляется на свет сама наука. Наиболее ясно наука осознала саму себя в трудах великого древнегреческого философа Аристотеля. Он создал формальную логику, т.е. фактические учения о доказательстве. Важнейшим фрагментом античной картины мира стало последовательное геоцентрическое учение о мировых сферах.

Вторая глобальная научная революция приходится на 16-18в. (Н.Коперник, Г.Галилей, И.Ньютон). Ее исходным пунктом считается переход от геоцентрической модели мира к гелиоцентрической. Отличие 1 от 2: 1). Классическое естествознание заговорило языком математическим. Античная наука тоже ценила математику, однако ограничивала сферу ее применения, полагая, что описание земных явлений возможно только качественное. 2) Новоевропейская наука также нашла мощную опору в методах экспериментального исследования явлений со строго контролируемыми условиями. 3) Клас.ест-е разрушило античные представления о космосе как вполне завершенном и гармоничном мире. На смену им пришла концепция бесконечной существующей Вселенной. 4) Доминантой клас.ест-я, да и всей науки Нового времени, стала механика. 5). Сформировался также четкий идеал научного знания: раз и навсегда установленная абсолютно истинная картина природы, которую можно подправлять в деталях, но радикально переделывать уже нельзя. Итог: механическая научная картина мира на базе экспериментально-математического естествознания.

«Потрясение основ» - третья научная революция на рубеже 19-20в. В это время последовала целая серия блестящих открытий в физике (строение атома, явления радиоактивности). Наиболее значимыми стали теория относительности и квантовая механика. Первая – общая теория пространства, времени и тяготения. Вторая – законы микромира, корпускулярно-волновой дуализм. 1. Ньютоновская естест.-научная револ. Изначально была связана с переходом от геоцентризма к гелиоцентризму. Эйнштейновский переворот в этом плане означал принципиальных отказ от всякого центризма вообще. Любое наше представление, в том числе и вся научная картина мира в целом относительны. 2. Клас.ест. опиралось и на другие исходные идеализации, интуитивно очевидные и прекрасно согласующиеся со здравым смыслом. Все они оказались неадекватными при описании микро- и мегамиров и потому были видоизменены. 3. Неоклас.ест.-науч. картина мира отвергла клас-ое жесткое противопоставление субъекта и объекта познания. Объект познания перестал восприниматься как сущест-щий «сам по себе». Его научное описание оказалось зависимым от определенных условий познания. 4. Изменилось и «представление» естественно-научной картины мира о самой себе: стало ясно, что «единственно верную», абсолютно точную картину не удастся нарисовать никогда. Любая из таких «картин» может обладать лишь относительной истинностью.

Т.о., диалектическое единство прерывности и непрерывности, революционности и стабильности можно считать одной из закономерностей развития науки.

Научная картина мира, в котором мы живем, состоит из разномасштабных открытых систем, развитие которых подчиняется некоторым общим закономерностям. При этом он имеет свою долгую историю, которая в общих чертах известна современной науке.

Картина мира, рисуемая современным естествознанием, необыкновенно сложна и проста одновременно. Сложна потому, что способна поставить в тупик человека, привыкшего к согласующимся со здравым смыслом классическим научным представлениям. Но в то же время картина проста, стройна и где-то даже элегантна. Эти качества ей придают принципы построения и организации современного научного знания: 1) системность 2) глобальный эволюционизм, 3) самоорганизация 4) историчность. Системность означает воспроизведение наукой того факта, что наблюдаемая Вселенная предстает как наиболее крупная из всех известных нам систем, состоящая из огромного множества элементов разного уровня сложности и упорядоченности. Системный способ объединения элементов выражает их принципиальное единство. Глобальный эволюционизм- это признание невозможности существования Вселенной и всех порождаемых ею менее масштабных систем вне развития, эволюции. Самоорганизация – это наблюдаемая способность материи к самоусложнению и созданию все более упорядоченных структур в ходе эволюции.

Эти принципиальные особенности современной естественнонаучной картины мира и определяют в главном ее общий контур, а также сам способ организации разнообразного научного знания в нечто целое и последовательное.

Однако у нее есть и еще одна особенность, отличающая ее от прежних вариантов. Она заключается в признании историчности, а следовательно, принципиальной незавершенности настоящей, да и любой другой научной картина мира. Развитие общества, изменение его ценностных ориентации, осознание важности исследования уникальных природных систем, в которые составной частью включен и сам человек, меняет и стратегию научного поиска, и отношение человека к миру.

10. ДИФФЕРЕНЦИАЦИЯ, ИНТЕГРАЦИЯ И МАТЕМАТИЗАЦИЯ

В СОВРЕМЕННОЙ НАУКЕ

Важной закономерностью развития науки принято считать единство процессов дифференциации и интеграции научного знания. Стремление свести всю сложность единого, целостного мира природы к нескольким «простым элементам» настроило исследователей на подробнейшую детализацию изучаемой реальности. Изобретение таких приборов, как телескоп и микроскоп, гигантски расширило познавательные возможности и количество доступных изучению объектов природы. Поэтому рост научного знания сопровождался его непрерывной дифференциацией, т.е. разделением, дроблением на все более мелкие разделы и подразделы.

Интегративные процессы в естествознании ныне, кажется, «пересиливают» процессы дифференциации, дробления наук. Интеграция естественно-научного знания стала, по-видимому, ведущей закономерностью его развития. Она может проявляться во многих формах: 1. в организации исследований «на стыке» смежных научных дисциплин; 2. в разработке «трансдисциплинарных» научных методов, имеющих значение для многих наук; 3. в изменении характера решаемых современной наукой проблем; 4. в разработке теорий, выполняющих обметодологические функции. Дифференциация и интеграция невзаимоисключающие, а взаимодополнительные тенденции.

Классическое естествознание «выросло» на применении экспериментально-математических методов. Успешное использование математики для выражения закономерных связей и отношений любых природных объектов способствовало возникновению веры в то, что научность знания определяется степенью его математизации. Главное достоинство математики в том, что она способна служить источником моделей, алгоритмических схем для связей, отношений и процессов, составляющих предмет ест-я. Роль математики в современном ест-ии трудно переоценить. Достаточно сказать, что ныне новая теоретическая интерпритация какого-либо явления считается полноценной, если удается создать математический аппарат, отражающий основные закономерности этого явления.

11. СИНЕРГЕТИКА КАК ТЕОРИЯ САМООРГАНИЗАЦИИ

Появление синергетики в современном ест-ии, очевидно, инициировано, подготовкой глобального эволюционного синтеза всех естественно-научных дисциплин. Для сохранения непротиворечивости общей картины мира необходимо постулировать наличие у материи в целом не только разрушительной, но и создательской тенденции. Материя способна осуществлять работу и против термодинамического равновесия, самооорганизовываться и самоусложняться. Стоит отметить, что постулат о способности материи к саморазвитию в философию был введен достаточно давно. А вот его необходимость в фундаментальных естественных науках (физике, химии) начинает осознаваться только сейчас. На волне этих проблем возникла синергетика – теория самоорганизации. Ее разработка началась несколько десятилетий назад, и в настоящее время развивается по нескольким направлениям: синергетика (Г.Хакен), неравновесная термодинамика (И.Пригожин) и др.

Главный мировоззренческий сдвиг, произведенный синергетикой, можно выразить следующим образом: а) процессы разрушения и созидания, деградации и эволюции во Вселенной по меньшей мере равноправны; б) процессы созидания (нарастания сложности и упорядоченности) имеют единый алгоритм независимо от природы систем, в которых они осуществляются. Т.о. синергетика претендует на открытие некоего универсального механизма, с помощью которого осуществляется самоорганизация как в живой, так и в неживой природе. Под самоорганизацией при этом понимается спонтанный переход открытой неравновесной системы от менее к более сложным и упорядоченным формам организации. Отсюда следует, что объектом синергетики могут быть отнюдь не любые системы, а только те, которые удовлетворяют, по меньшей мере, двум условиям: 1) они должны быть открытыми, т.е. обмениваться веществом или энергией с внешней средой; 2) они должны также быть существенно неравновесными, т.е. находиться в состоянии, далеком от термодинамического равновесия.

Синергетика родом из физических дисциплин – термодинамики, радиофизики. Но ее идеи носят междисциплинарный характер. Они подводят базу под совершающийся в естествознании глобальный эволюционный синтез. Поэтому в синергетике видят одну из важнейших составляющих современной научной картины мира.

12. ПРИНЦИПЫ СОВРЕМЕННОЙ НАУЧНОЙ КАРТИНЫ МИРА

Последовательно сменявшие другу друга научные картины мира (античная, ньютоновская и современная) претерпели очень похожие превращения.

Античный ученый мир рисовал свою картину с большой долей фантазии и выдумки, сходство с изображаемым было минимальными. Ньютоновская картина мира стала суше, строже и во много раз точнее (этакая черно-белая фотография, местами, правда неясная). Нынешняя картина мира «оживила» неподвижную доселе Вселенную, обнаружила в каждом фрагменте эволюцию, развитие. Описание истории Вселенной со всем ее содержимым потребовало уже не фотографии, а киноленты, каждый кадр которой соответствовал определенному этапу её развития. Это – главная принципиальная особенность современной естественно-научной картины мира – принцип глобального эволюционизма.

Появление принципа глобального эволюционизма означает, что в современном естествознании утвердилось убеждение в том, что материя, Вселенная в целом и во всех ее элементах не могут существовать вне развития.

Это принципиально новый для естествознания взгляд на вещи, хотя сама идея эволюции родом из 19 века. Наиболее сильно она прозвучала в учении Ч.Дарвина о происхождении видов. Первую крупную брешь в антиэволюционном настрое классической физики пробыло в начале 20-х годов открытие расширения Вселенной, или иначе – ее нестационарности. Эволюция прорвалась в физику и космологию. Но не только в них. В последние десятилетия благосклонное отношение к эволюционным представлениям начала проявлять и химия. В 20 веке эволюционное учение интенсивно развивалось и в рамках его прародительницы – биологии. Наиболее выдающиеся успехи достигнуты на молекулярно-генетическом уровне: расшифрован генетический механизм передачи наследуемой информации, выяснены роль и структура ДНК и РНК и т.п.

Современное естествознание вправе провозгласить лозунг: «Все существующее есть результат эволюции!»

Мир, в котором мы живем, состоит из разномасштабных открытых систем, развитие которых подчиняется некоторым общим закономерностям. При этом он имеет свою долгую историю, которая в общих чертах известна современной науке. Современной науке известны не только «даты», но во многом и сам механизм эволюции Вселенной от Большого взрыва до наших дней.

Ведущими принципами построения и организации современного научного знания являются: Системность, Глобальный эволюционизм, Самоорганизация, Историчность.

Системность означает воспроизведение наукой того факта, что наблюдаемая Вселенная предстает как наиболее крупная из всех известных нам систем, состоящая из огромного множества элементов (подсистем) разного уровня сложности и упорядоченности.

Глобальный эволюционизм - это признание невозможности существования Вселенной и всех порождаемых ею менее масштабных систем вне развития, эволюции.

Самоорганизация – это наблюдаемая способность материи к самоосложнению и созданию все более упорядоченных структур в ходе эволюции. Механизм перехода материальных систем в более сложное и упорядоченное состояние, по-видимому, сходен для систем всех уровней.

Эти принципиальные особенности современной естественно-научной картины мира и определяют в главном ее общий контур, а также сам способ организации разнообразного научного знания и нечто целое и последовательное.

Есть у нее еще одна особенность, отличающая ее от прежних вариантов. Она заключается в признании историчности, а следовательно, принципиальной незавершенности настоящей, да и любой другой научной картины мира.

13. КОСПУРКУЛЯРНО-ВОЛНОВОЙ ДУАЛИЗМ

Корпускулярно-волновой дуализм — физический квантовой механики для объяснения явлений, наблюдаемых в микромире.

В частности, электрон).

14. ОТЛИЧИЕ ВЕЩЕСТВА ОТ ПОЛЯ

Поле, в отличие от веществ, характеризуется непрерывностью. Известны электромагнитное и гравитационное поля, поле ядерных сил, волновые поля различных элементарных частиц.

Современное естествознание нивелирует различие между веществом и полем, считая, что и вещества, и поля состоят из различных частиц, обладающих корпускулярно-волновой (двойственной) природой. Выявление тесной взаимосвязи между полем и веществом привело к углублению представлений о единстве всех форм и структуры материального мира.

15. МИКРОМИР И КВАНТОВО - МЕХАНИСТИЧЕСКАЯ

КОНЦЕПЦИЯ ЕГО ОПИСАНИЯ

Изучая микрочастицы, ученые столкнулись с парадоксальной, с точки зрения науки, ситуацией: одни и те же объекты обнаруживали как волновые, так и корпускулярные. Первый шаг в этом направлении был сделан немецким физиком М.Планком. Он пришел к выводу, что в процессах излучения энергия может быть отдана или поглощена не непрерывно и не в любых количествах, а лишь в известных неделимых порциях – квантах. Сумма энергий этих мельчайших порций энергии – квантов определяется через число колебаний соответствующего вида излучения и универсальную естественную константу. Первых физиком, который восторженно принял открытие элементарного кванта действия и творчески развил его, был А.Эйнштейн. Он предположил, что речь идет о естественной закономерности всеобщего характера. Он применил гипотезу Планка к свету и пришел к выводу, что следует признать корпускулярную структуру света. Квантовая теория Эйнштейна утверждала, что свет есть постоянно распространяющееся в мировом пространстве волновое явление. И вместе с тем световая энергия, чтобы быть физически действенной, концентрируется лишь в определенных местах, поэтому свет имеет прерывную структуру. Свет может рассматриваться как поток неделимых световых квантов.

Открытое в 1923г. американским физиком А.Х.Комптоном явление (эффект Комптона), которое отмечается при воздействии очень жесткими рентгеновскими лучами на атомы со свободными электронами, вновь и уже окончательно подтвердило квантовую теорию света. Представления Эйнштейна о квантах света, послужившие в 1913г. отправным пунктом теории Н.Бора, через 10 лет основа оказали плодотворное воздействие на развитие атомной физики. В 1924г. произошло одно из величайших событий в истории физики: французский физик Луи де Броль выдвинул идею о волновых свойствах материи. Он писал о необходимости использовать волновые и корпускулярные представления не только с учениями Эйнштейна в теории света, но также в теории материи.

Признание корпускулярно-волнового дуализма в современной физике стало всеобщим. Любой материальный объект характеризуется наличием как корпускулярных, так и волновых свойств.

Квантово-механическое описание микромира основывается на соотношении неопределенностей, установленном немецким физиком В.Гейзенбергом. Суть соотношения неопределенностей в следующем. Никогда нельзя одновременно точно знать оба параметра – координату и скорость. Никогда нельзя одновременно знать, где находится частица, как быстро и в каком направлении она движется.

С точки зрения классической механики, соотношение неопределенностей представляется абсурдом. Мы, люди, живем в макромире и в принципе не можем построить наглядную модель, которая была бы адекватна микромиру.

16. СОВРЕМЕННОЕ УЧЕНИЕ О СТРОЕНИИ АТОМА

Современная модель атома является развитием планетарной модели. Согласно этой модели, ядро атома состоит из положительно заряженных протонов и не имеющих заряда нейтронов и окружено отрицательно заряженными электронами. Однако представления квантовой механики не позволяют считать, что электроны движутся вокруг ядра по сколько-нибудь определённым траекториям (неопределённость координаты электрона в атоме может быть сравнима с размерами самого атома).

Химические свойства атомов определяются конфигурацией электронной оболочки и описываются квантовой механикой. Положение атома в таблице Менделеева определяется электрическим зарядом его ядра (т.е. количеством протонов), в то время как количество нейтронов принципиально не влияет на химические свойства; при этом нейтронов в ядре, как правило, больше, чем протонов. Если атом находится в нейтральном состоянии, то количество электронов в нём равно количеству протонов. Основная масса атома сосредоточена в ядре, а массовая доля электронов в общей массе атома незначительна (несколько сотых процента массы ядра).

Массу атома принято измерять в атомных единицах массы, равных 1?12 от массы атома стабильного изотопа углерода 12C.

Строение:

Субатомные частицы

Хотя слово атом в первоначальном значении обозначало частицу, которая не делится на меньшие части, согласно научным представлениям он состоит из более мелких частиц, называемых субатомными частицами. Атом состоит из электронов, протонов, все атомы, кроме водорода-1, содержат также нейтроны.

Электрон является самой лёгкой из составляющих атом частиц с массой 9,11?10?28 м, хотя размеры этих частиц определены плохо.

В стандартной модели элементарных частиц как протоны, так и нейтроны состоят из элементарных частиц, называемых кварками. Наряду с лептонами, кварки являются одной из основных составляющих материи. И первые и вторые являются фермионами. Существует шесть типов кварков, каждый из которых имеет дробный электрический заряд, равный +2?3 или ?1?3 элементарный. Протоны состоят из двух u-кварков и одного d-кварка, а нейтрон — из одного u-кварка и двух d-кварков. Это различие объясняет разницу в массах и зарядах протона и нейтрона. Кварки связаны между собой сильными ядерными взаимодействиями, которые передаются глюонами.

Электронное облако

Термин «электронное облако» не совсем корректен с точки зрения квантовой механики, поэтому вместо него физики чаще всего говорят об «облаке вероятности».

Электроны в атоме притягиваются к протонам, находящимся в ядре, под действием потенциального барьера, окружающего ядро. Для того, чтобы электрон смог преодолеть притяжение ядра, ему необходимо передать энергию от внешнего источника. Чем ближе электрон находится к ядру, тем больше энергии для этого необходимо.

Электронам, как и другим частицам, свойственен волновой функцией, квадрат которой характеризует плотность вероятности нахождения частицы в данной точке пространства в данный момент времени. Существует дискретный набор таких орбиталей, и электроны могут находиться длительное время только в этих состояниях, так как они являются наиболее устойчивыми.

Каждой орбитале соответствует свой фотон. При этом он окажется в новом квантовом состоянии с большей энергией. Аналогично, он может перейти на уровень с меньшей энергией, излучив фотон. Энергия фотона при этом будет равна разности энергий электрона на этих уровнях.

17. ЭЛЕМЕНТАРНЫЕ ЧАСТИЦИ И ИХ СОЙСТВА.

ФИЗИЧЕСКИЙ ВАКУУМ

Частицы, входящие в состав прежде «неделимого» атома, называют элементарными. К ним относят и те частицы, которые получают в условиях эксперимента на мощных ускорителях. В настоящее время открыто более 350 микрочастиц.

Термин «элементарная частица» первоначально означал простейшие, далее ни на что не разложимые частицы, лежащие в основе любых материальных образований. Позднее физики осознали всю условность термина «элементарный» применительно к микрообъектам. Сейчас уже не подлежит сомнению, что частицы имеют ту или иную структуру, но тем не менее, исторически сложившееся название продолжает существовать.

Основными характеристиками элементарных частиц являются масса, заряд, среднее время жизни, спин и квантовые числа.

Массу покоя элементарных частиц определяют по отношению к массе покоя электрона. Существуют элементарные частицы, не имеющие массы покоя, - фотоны. Остальные частицы по этому признаку делятся на лептоны – легкие частицы (электрон и нейтрино); мезоны – средние частицы с массой в пределах от одной до тысячи масс электрона; барионы – тяжелые частицы, чья масса превышает тысячу масс электрона и в состав которых входят протоны, нейтроны, гипероны и многие резонансы.

Электрический заряд является другой важнейшей характеристикой элементарных частиц. Все известные частицы обладают положительным, отрицательным либо нулевым зарядом.

По времени жизни частицы делятся на стабильные и нестабильные. Стабильных частиц пять: фотон, две разновидности нейтрино, электрон и протон. Именно стабильные частицы играют важнейшую роль в структуре макротел. Все остальные частицы нестабильны и распадаются. Элементарные частицы со средним временем жизни называют резонансами. Вследствие краткого времени жизни они распадаются еще до того, как успеют покинуть атом или атомное ядро.

Помимо заряда, массы и времени жизни, элементарные частицы описываются понятиями, не имеющими аналогов в классической физике: понятием «спина», или собственного момента количества движения микрочастицы, и понятием «квантовых чисел», выражающих состояние элементарных частиц.

Согласно современным представлениям, все элементарные частицы делятся на два класса – фермионы (названные в честь Э.Ферми) и бозоны (названные в честь Ш.Бозе).

Всем элементарным частицам присущ корпускулярно-волновой дуализм: с одной стороны, частицы представляют собой единые, неделимые объекты, с другой стороны, они в определённом смысле «размазаны» в пространстве. При определённых условиях такая «размазанность» может принимать даже макроскопические размеры. Квантовая механика описывает частицу, используя так называемую волновую функцию, которая определяет, где точно находится частица, а где бы она могла находиться и с какой вероятностью.

Физический вакуум

Вакуум не является абсолютной пустотой. В соответствии с квантовой теорией поля в вакууме непрерывно рождаются и умирают виртуальные частицы, которые при определённых условиях могут превращаться в реальные. Например, в ряде физических опытов из вакуума рождаются пары частица-античастица (с превращением энергии в массу). Согласно некоторым теориям, вакуум может находиться в разных состояниях с разными уровнями энергии. Современная наука пока не даёт удовлетворительного описания структуры и свойств вакуума.

18. ТИПЫ ФИЗИЧЕСКИХ ВЗАИМОДЕЙСТВИЙ.

ПРОБЛЕМА «СУПЕР-СИЛЫ»

Элементарные частицы участвуют во всех видах известных взаимодействий. Различают 4 вида фундаментальных взаимодействий: сильное (происходит на уровне атомных ядер и представляет собой взаимное притяжение и отталкивание их составных частей), электромагнитное (примерно в 1000 раз слабее сильного, но значительно более дальнодействующее (не имеющий заряда фотон)), слабое (возможно между различными частицами и связано с распадом частиц, например, с происходящими в атомном ядре превращениями нейтрона в протон, электрон) и гравитационное (самое слабое, не учитываемое в теории элементарных частиц).

Все 4 взаимодействия необходимы и достаточны для построения разнообразного мира.

Современная физика пришла к выводу, что все 4 фундаментальных взаимодействия, необходимые для создания из элементарных частиц сложного и разнообразного материального мира, можно получить из одного фундаментального взаимодействия – «суперсилы». Наиболее ярким достижением стало доказательство того, что при очень высоких температурах (или энергиях) все 4 взаимодействия объединяются в одно.

Это предположение носит чисто теоретический характер, поскольку экспериментальным путем его проверить невозможно. Косвенно эти идеи подтверждаются астрофизическими данными, которые можно рассматривать как экспериментальный материал, накопленный Вселенной.

19. МЕГАМИР: СОВРЕМЕННЫЕ АСТРОФИЗИЧЕСКИЕ

И КОСМОЛОГИЧЕСКИЕ ПРЕДСТАВЛЕНИЯ

Мегамир или космос, современная наука рассматривает как взаимодействующую и развивающуюся систему всех небесных тел. Мегамир имеет системную организацию в форме планет и планетных систем, возникающих вокруг звезд; звезд и звездных систем – галактик.

Все существующие галактики входят в систему самого высокого порядка – Метагалактику. Размеры Метагалактики очень велики: радиус космологического горизонта составляет 15-20млрд. световых лет.

Понятия «Вселенная» и «Метагалактика» - очень близкие понятия: они характеризуют один и тот же объект, но в разных аспектах. Понятие «Вселенная» обозначает весь существующий материальный мир; понятие «Метагалактика» - тот же мир, но с точки зрения его структуры – как упорядоченную систему галактик.

Строение и эволюция Вселенной изучается космологией. Космология как раздел естествознания, находится на своеобразном стыке науки, религии и философии. В основе космологических моделей Вселенной лежат определенные мировоззренческие предпосылки, а сами эти модели имеют большое мировоззренческое значение.

20. ПРОБЛЕМА ПРОИСХОЖДЕНИЯ И ЭВОЛЮЦИИ ВСЕЛЕННОЙ

Г.А.Гамов разработал модель горячей Вселенной, рассматривая ядерные реакции, протекавшие в самом начале расширения Вселенной, и назвал ее «космологией Большого взрыва». В современной космологии для наглядности начальную стадию эволюции Вселенной делят на «эры». Эра адронов (тяжелых частиц, вступающих в сильные взаимодействия). Продолжительность 0,0001 с. В конце эры происходит аннигиляция частиц и античастиц, но остается некоторое количество протонов, гиперонов, мезонов. Эра лептонов (легких частиц, вступающих в электромагнитное взаимодействие). Продолжительность эры 10с. Основную роль играют легкие частицы, принимающие участие в реакциях между протонами и нейтронами. Фотонная эра. Продолжительность 1млн. лет. Основная доля массы – энергии Вселенной – приходится на фотоны. Главную роль играет излучение, которое в конце эры отделяется от вещества. Звездная эра наступает через 1млн. лет после зарождения Вселенной. В звездную эру начинается процесс образования протозвезд и протогалактик. Затем разворачивается картина образования структуры Метагалактики.

В современной космологии наряду с гипотезой Большого взрыва весьма популярна инфляционная модель Вселенной, в которой рассматривается творение Вселенной. Начало Вселенной определяется физиками-теоретиками как состояние квантовой гравитации с радиусом Вселенной в 10-50см. (размер атома 10-8см). Основные события в ранней Вселенной.

Стадия инфляции. В результате квантового скачка Вселенная перешла в состояние возбужденного вакуума и в отсутствие в ней вещества и излучения интенсивно расширялись по экспоненциальному закону. В это период создавалось само пространство и время Вселенной. Переход от инфляционной стадии к фотонной. Состояние ложного вакуума распалось, высвободившееся энергия пошла на рождение тяжелых частиц и античастиц, которые дали мощную вспышку излучения (света), осветившего космос. Этап отделения вещества от излучения: оставшееся после аннигиляции вещество стало прозрачным для излучения, контакт между веществом и излучением пропал. Отделившееся от вещества излучение и составляет современный реликтовый фон. В дальнейшем развитие Вселенной шло в направлении от максимально простого однородного состояния к созданию все более сложных структур – атомов, галактик, звезд, планет, в том числе и необходимых для создания жизни, возникновению жизни и как венца творения – человека.

21. СОВРЕМЕННАЯ НАУКА О СТРУКТУРЕ ВСЕЛЕННОЙ

Современная структура Вселенной является результатом космической эволюции, в ходе которой из протогалактик образовались галактики, из протозвезд – звезды, из протопланетного облака – планеты.

Метагалактика представляет собой совокупность звездных систем – галактик, а ее структура определяется их распределением в пространстве, заполненном чрезвычайно разреженным межгалактическим газом и пронизываемом межгалактическими лучами. Согласно современным представлениям, для Метагалактики характерна ячеистая (сетчатая, пористая) структура. Эти представления основываются на данных астрономических наблюдений. Возраст Метагалактики близок к возрасту Вселенной.

Галактика – гигантская система, состоящая из скоплений звезд и туманностей, образующих в пространстве достаточно сложную конфигурацию. По форме галактики разделяются на три типа: эллиптические, спиральные и неправильные. Некоторые галактики характеризуются исключительно мощным радиоизлучением, превосходящим видимое излучение. Это радиогалактики. В строении «правильных» галактик очень упрощенно можно выделить центральное ядро и сферическую периферию, представленную либо в форме огромных спиральных ветвей, либо в форме эллиптического диска, включающих наиболее горячие и яркие звезды и массивные газовые облака.

Звезды. На современном этапе эволюции Вселенной вещество в ней находится преимущественно в звездном состоянии. Звезды не существуют изолированно, а образуют системы. Простейшие звездные системы состоят из двух, трех, четырех, пяти и больше звезд. Звезды объединены также в еще большие группы – звездные скопления, которые могут иметь «рассеянную» или «шаровую» структуру. Рассеянные звездные скопления насчитывают несколько сотен отдельных звезд, шаровые скопления – многие сотни тысяч.

Солнечная система представляет собой группу небесных тел, весьма различных по размерам и физическому строению. В эту группу входят: Солнце, 9 больших планет, десятки спутников планет, тысячи малых планет (астероидов), сотни комет и бесчисленное множество метеоритных тел, движущихся как роями, так и в виде отдельных частиц. О механизме образования планет в Солнечной системе нет общепризнанных заключений. Теории происхождения Солнечной системы носят гипотетический характер, и однозначно решить вопрос об их достоверности на современном этапе развития науки невозможно. Во всех существующих теориях имеются противоречия и неясные места.

22. РАЗВИТИЕ ВЗГЛЯДОВ НА ПРОСТРАНСТВО

И ВРЕМЯ В НАУЧНОМ ПОЗНАНИИ

Уже в античном мире мыслители задумывались над природой и сущностью пространства и времени. Одни из философов отрицали возможность существования пустого пространства или, по их выражению, небытия. Некоторые философы, в том числе Демокрит, утверждали, что пустота существует, как материи и атомы, и необходима для их перемещений и соединений.

В до ньютоновский период развитие представлений о пространстве и времени носило преимущественно стихийный и противоречивый характер. И только в «Началах» древнегреческого математика Евклида пространственные характеристики объектов впервые обрели строгую математическую форму. В это время зарождаются геометрические представления об однородном и бесконечном пространстве.

Геоцентрическая система К.Птолемея, изложенная им в труде «Альмагест», господствовала в естествознании до 16 века. Она представляла собой первую универсальную математическую модель мира, в которой время было бесконечным, а пространство конечным, включающим равномерное круговое движение небесных тел вокруг неподвижной Земли.

Коренное изменение пространственной и всей физической картины произошло в гелиоцентрической системе мира, развитой Н.Коперником в работе «Об обращениях небесных сфер». Принципиальное отличие этой системы мира от прежних теорий состояло в том, что в ней концепция единого однородного пространства и равномерности течения времени обрела реальный эмпирический базис.

Космологическая теория Д.Бруно связала воедино бесконечность Вселенной и пространства.

Подлинная революция в механике связана с именем Г.Галилея. Он ввел в механику точный количественный эксперимент и математическое описание явлений. Первостепенную роль в развитии представлений о пространстве сыграл открытый им общий принцип классической механики – принцип относительности Галилея. Согласно этому принципу все физические (механические) явления происходят одинаково и прямолинейно с постоянной по величине и направлению скоростью. Такие системы называются инерциальными. Математические преобразования Галилея отражают движение в двух инерциальных системах, движущихся с относительно малой скоростью (меньшей, чем скорость света в вакууме). Они устанавливают инвариантность (неизменность) в системах длины, времени и ускорения.

Дальнейшее развитие представлений о пространстве и времени связано с рационалистической физикой Р.Декарта, который создал первую универсальную физико-космологическую картину мира. В основу ее Декарт положил идею о том, что все явления природы объясняются механическим воздействием элементарных материальных частиц.

Новая физическая гравитационная картина мира, опирающаяся на строгие математические обоснования, представлена в классической механике И.Ньютона. Ее вершиной стала теория тяготения, провозгласившая универсальный закон природы – закон всемирного тяготения. Согласно этому закону сила тяготения универсальна и проявляется между любыми материальными телами независимо от их конкретных свойств.

Распространив на всю Вселенную закон тяготения, Ньютон рассмотрел и возможную ее структуру. Он пришел к выводу, что Вселенная является не конечной, а бесконечной.

Раскрывая сущность времени и пространства, Ньютон характеризует их как «вместилища самих себя и всего существующего. Во времени все располагается в смысле порядка последовательности, в пространстве – в смысле порядка положения». Он предлагает различать два типа понятий пространства и времени: абсолютные (истинные, математические) и относительные (кажущиеся, обыденные).

С критикой ньютоновских представлений о пространстве и времени выступил немецкий ученый Г.В.Лейбниц. Он развивал реляционную концепцию пространства и времени, отрицающую существование пространства и времени как абсолютных сущностей.

Ньютоновская концепция пространства и времени, на основе которой строилась физическая картина мира, оказалась господствующей вплоть до конца 19 века.

Пространство считалось бесконечным, плоским, «прямолинейным», евклидовым.

Время понималось абсолютным, однородным, равномерно текущим.

Абсолютное время и пространство служили основой для преобразований Галилея – Ньютона, посредством которых осуществлялся переход к инерциальным системам.

Принятие абсолютного времени и постулирование абсолютной и универсальной одновременности во всей Вселенной явилось основой для теории дальнодействия.

До 19 века физика была в основном физикой вещества. В физике 19 века появляется новое понятие – «поле», что, по словам Эйнштейна, явилось «самым важным достижением со времени Ньютона».

Специального объяснения в рамках существовавшей в конце 19 века физической картины мира требовал и отрицательный результат по обнаружению мирового эфира, полученный американским физиком А.Майкельсоном. Его опыт доказал независимость скорости света от движения Земли.

Создатель электронной теории материи Х.Лоренц вывел математические уравнения (преобразования Лоренца) для вычисления реальных сокращений движущихся тел и промежутков времени между событиями, происходящими на них, в зависимости от скорости движения.

23. ПРОСТРАНСТВО И ВРЕМЯ В СПЕЦИАЛЬНОЙ

ТЕОРИИ ОТНОСИТЕЛЬНОСТИ ЭЙНШТЕЙНА

Специальная теория относительности, созданная в 1905 г. А. Эйнштейном, стала результатом обобщения и синтеза классической механики Галилея — Ньютона и электродинамики Максвелла — Лоренца. «Она описывает законы всех физических процессов при скоростях движения, близких к скорости света, но без учета поля тяготения. При уменьшении скоростей движения она сводится к классической механике, которая, таким образом, оказывается ее частным случаем». Создатель теории относительности сформулировал обобщенный принцип относительности, который теперь распространяется и на электромагнитные явления, в том числе и на движение света. Этот принцип гласит, что никакими физическими опытами (механическими, электромагнитными и др.), производимыми внутри данной системы отсчета, нельзя установить различие между состояниями покоя и равномерного прямолинейного движения.

Еще раз подчеркнем, что эффекты специальной теории относительности будут обнаруживаться при скоростях, близких световым. При скоростях значительно меньше скорости света формулы СТО переходят в формулы классической механики.

Эйнштейн попытался наглядно показать, как происходит замедление течения времени в движущейся системе по отношению к неподвижной. Представим себе железнодорожную платформу, мимо которой проходит поезд со скоростью, близкой к скорости света Теория относительности доказала, что не существует ни абсолютного времени, ни абсолютного пространства

24. ВЗАИМОСВЯЗЬ ПРОСТРАНСТВА, ВРЕМЕНИ

И ГРАВИТАЦИИ В ОТО ЭЙНШТЕЙНА

В общей теории относительности (ОТО), или теории тяготения, Эйнштейн расширяет принцип относительности, распространяя его на неинерциальные системы. В ней он также исходит из экспериментального факта эквивалентности масс инерционных и гравитационных, или эквивалентности инерционных и гравитационных полей. Правда, принцип эквивалентности справедлив только при строго локальных наблюдениях.

В общей теории относительности Эйнштейн доказал, что структура пространства – времени определяется распределением масс материи. Когда корреспондент американской газеты «Нью-Йорк Таймс» спросил Эйнштейна в апреле 1921г., в чем суть его теории относительности, он ответил: «Суть такова: раньше считали, что если каким-нибудь чудом все материальные вещи исчезли бы вдруг, то пространство и время остались бы. Согласно же теории относительности вместе с вещами исчезли бы пространство и время».

25. СВОЙСТВА ПРОСТРАНСТВА И ВРЕМЕНИ

В СОВРЕМЕННЫХ НАУЧНЫХ ПРЕДСТАВЛЕНИЯХ

Пространство и время являются универсальными, всеобщими формами бытия материи. Нет явлений, событий, предметов, которые существовали бы вне пространства или вне времени. В отличие от пространства, в каждую точку которого можно снова и снова возвращаться, время – необратимо и одномерно. Оно течет из прошлого через настоящее к будущему. Необратимость времени в макроскопических процессах находит свое воплощение в законе возрастания энтропии. В замкнутой системе максимально возможная энтропия соответствует наступлению в ней теплового равновесия: разности температур в отдельных частях системы исчезают и макроскопические процессы становятся невозможными.

Пространство обладает свойством однородности и изотропности, а время – однородности. Однородность заключается в равноправии всех его точек, а изотропность – в равноправии всех направлений. Во времени все точки равноправны, не существует преимущественной точки отсчета, любую можно принимать за начальную.

В современной науке используются понятия биологического, психологического и социального пространства и времени. Характеризуют особенности пространственно-временных параметров органической материи: биологическое бытие человеческого индивида, смену видов растительных и животных организмов, их жизнь и смерть. Одновременно идет формирование нового феномена – психологического пространства и времени. Психическая регуляция движений индивида и его предметных действий происходит не только на уровне отражения внешнего физического пространства, но и на основе собственной телесной биомеханики и собственного пространства. Особенности психологического пространства и времени появляются на уровне коллективного бессознательного, разработку которого осуществил К.Г.Юнг. Он показал длительность формирования непроизвольных и спонтанных продуктов бессознательной психики в процессе психической эволюции, его коллективную, универсальную и безличную природу, идентичную у всех индивидов.

Одновременно идет процесс формирования нового феномена – социального пространства и времени. Социальное пространство включает пространственную организацию социальных объектов общества, которые дифференцированы, разделены и определенным образом ориентированы. Его можно характ-ть и как форму бытия социальной материи, в кот.социальная энергия превращается в конкретные формы ж\д-ти личностей и общества в целом. Социальное время – это определенный по длительности период, каким располагает любой социальный объект и общество в целом. Это – совокупное время существования и деятельности всех индивидов общества. При этом социальное время неотделимо от социального пространства.

26. СТРУКТУРНЫЕ УРОВНИ ОРГАНИЗАЦИИ МАТЕРИИ

В современной науке в основе представлений о строении материального мира лежит системный подход, согласно которому любой объект материального мира, будь то атом, планета, организм или галактика, может быть рассмотрен как сложное образование, включающие составные части, организованные в целостность. Для обозначения целостности объектов в науке было выбрано понятие системы.

Система представляет собой совокупность элементов и связей между ними. Совокупность связей между элементами образует структуру системы. Существуют 2 типа связей между элементами системы – по «горизонтали» и по «вертикали». Связи по «горизонтали» - это связи координации между однопорядковыми элементами. Связи по «вертикали» – это связи субординации, т.е. соподчинения элементов. Исходным пунктом всякого системного исследования является представление о целостности изучаемой системы. Целостность системы означает, что все ее составные части, соединяясь вместе, образуют уникальное целое, обладающее новыми интегративными свойствами.

В естественных науках выделяют 2 больших класса материальных систем: системы неживой природы и системы живой природы. В неживой природе в качестве структурных уровней организации материи выделяют элементарные частицы, атомы, молекулы, поля, макроскопические тела, планеты, звезды. В живой природе к структурным уровням организации материи относят системы до клеточного уровня – нуклеиновые кислоты и белки; клетки как особый уровень биологической организации, представленные в форме одноклеточных организмов и элементарных единиц живого вещества; многоклеточные организмы растительного и животного мира. В природе все взаимосвязано, поэтому можно выделить такие системы, которые включают элементы как живой, так и неживой природы – биогеоценозы. В науке выделяют 3 уровня строения материи. Макромир – мир макрообъектов, размерность которых соотносима с масштабами человеческого опыта. Микромир – мир предельно малых, непосредственно не наблюдаемых микрообъектов. Мегамир – мир огромных космических масштабов и скоростей, расстояние в котором измеряется световыми годами, а время существования космических объектов – миллионами и миллиардами лет.

27. СТРУКТУРНАЯ ОРГАНИЗАЦИЯ МАКРОМИРА

В современной науке в основе представлений о строении материального мира лежит системный подход, согласно которому любой объект материального мира, будь то атом, планета и т.д. может быть рассмотрен как система – сложное образование, включающее составные части, элементы и связи между ними. Элемент в данном случае означает минимальную, далее неделимую часть данной системы.

Совокупность связей между элементами образует структуру системы, устойчивые связи определяют упорядоченность системы. Связи по горизонтали – координирующие, обеспечивают корреляцию системы, ни одна часть системы не может измениться без изменения других. Связи по вертикали – связи субординации

Copyright © 2018 WorldReferat.ru All rights reserved.